

Computing

Year 6

Algorithms and programming- selection in physical computing

Age related computing vocabulary

Scenarios- foreseeable interactions of	Logical reasoning- explain why some-	Solution- a way in which a problem or
types of users and the system		task is solved or otherwise addressed
	out exactly what a program or computer	using electronic computers
	system will do	

Key Knowledge

- a microcontroller is a programmable device that can control outputs and respond to inputs (crumble)
- an algorithm is a precise set of ordered steps, which can be followed by a human or a computer in order to do a task
- algorithms can be presented in different ways
- 'conditions' can be used as inputs to control the crumble
- Conditions are always true or false statements
- Actions can either stop or start when conditions are met
- Selection follows an 'if... then...' structure
- Selection is where tasks are controlled by devices that have been programmed to carry out actions when a condition has been met.

Computing	Carlton Assessment Grid				
Success Criteria		Pupil Reflection		Teacher Assessment	
I can work with variables to control a circuit connected to a computer		Before	After		
I can design a solution by break cal reasoning to detect errors	ing a program up and use logi-	Before	After		
I can predict and explain why a loop can stop when a condi- tion is met		Before	After		
I understand that a loop can be used to repeatedly check whether a condition has been met		Before	After		
I can work with variables and explore 'what if' questions by planning scenarios for different devices.		Before	After		
I can select and use software to create a program that con- trols a physical computing project and debug where appropri- ate		Before	After		